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Abstract

Blossom-end rot (BER) is a devastating physiological disorder affecting vegetable production worldwide. Extensive
research into the physiological aspects of the disorder has demonstrated that the underlying causes of BER are
associated with perturbed calcium (Ca2+) homeostasis and irregular watering conditions in predominantly cultivated
accessions. Further, Reactive Oxygen Species (ROS) are critical players in BER development which, combined with
unbalanced Ca2+ concentrations, greatly affect the severity of the disorder. The availability of a high-quality
reference tomato genome as well as the whole genome resequencing of many accessions has recently permitted
the genetic dissection of BER in segregating populations derived from crosses between cultivated tomato
accessions. This has led to the identification of five loci contributing to BER from several studies. The eventual
cloning of the genes contributing to BER would result in a deeper understanding of the molecular bases of the
disorder. This will undoubtedly create crop improvement strategies for tomato as well as many other vegetables
that suffer from BER.
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Introduction
Vegetable production is challenged by a range of biotic and
abiotic factors, often resulting in a substantial loss of the
produce in each growing cycle. As the population is grow-
ing, the world is facing increasing demands for a stable food
supply grown on agricultural lands across the globe. Unfor-
tunately, abiotic stresses are becoming increasingly more
prevalent especially in light of climate change. Climate-
related changes, which are exemplified by extreme air and
water temperature, increased frequency and intensity of
rainfall, intense hurricanes and so forth are becoming more
prevalent (Wuebbles et al. 2017; Hoegh-Guldberg et al.
2018; U.S. Environmental Protection Agency 2021).

Undoubtfully, these extreme weather events will lead to an
increase in stress related diseases and disorders (U.S. Global
Change Research Program 2009). Short, and long-term im-
pacts of climate change are expected to further increase
these extreme weather conditions; thus, the stability of food
supplies and crop productivity will continue to be affected
adversely from these extreme events (Motha and Baier
2005; U.S. Global Change Research Program 2009; Lobell
et al. 2013; Hoegh-Guldberg et al. 2018).
BER is one of the most devastating physiological disor-

ders that affect various crops such as tomato (Solanum
lycopersicum L.), pepper (Capsicum annuum L.), water-
melon (Citrullus lanatus (Thunb.) and eggplant (Solanum
melongena L.) (Taylor and Locascio 2004; Díaz-Pérez and
Hook 2017) (Fig. 1). A related disorder in apple is bitter
pit (Bangerth 1979; de Freitas et al. 2010), BER and related
disorders affect mostly the fruit, but other organs such as
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leaves, and flowers can suffer as well. Various leafy vegeta-
bles suffer tipburn (Kuo et al. 1981; Francois et al. 1991;
Barta and Tibbitts 2000; Macias-González et al. 2019; Su
et al. 2019) and other vegetables such as celery and cauli-
flower are affected by disorders that appear similar to BER
(Geraldson 1952; Rosen 1990; Bouzo et al. 2007; Bianco
et al. 2015). Combined, these physiological disorders can
lead to significant yield losses especially in subsistence and
organic farming (Ikeda and Kanayama 2015; Hagassou
et al. 2019). As the demand for organic produce is increas-
ing, the impact of abiotic stresses on this sector may be-
come substantial as well. As an example, Hickory Hill
Farm in Carlton GA, USA faced a challenging season in
2018 when they lost almost 80% of the organically grown
tomatoes to BER (Josh Johns and Gary Shaw, personal
communication). BER was first described in tomato more
than 120 years ago as a physiological disorder caused by
inconsistent watering (Selby 1896), a notion that has held
up until today. The early studies also indicate that BER is
of great concern as it was linked to significant crop losses
caused by canopy transpiration rate and the use of
ammonium-based fertilization (Stuckey 1916; Wedgworth
et al. 1927; Chamberlain 1933).

In this review, we summarize the recent findings on
the development of BER from research primarily con-
ducted in tomato. These findings are starting to shed
light on the molecular basis of the onset of BER as well
as crop improvement strategies that can be applied in
the near future.

Development of BER symptoms
The initial external symptoms of BER in tomato are
often observed on the distal portion of the fruit during
the second week after pollination but can also occur
later during development at five weeks after pollination
(Spurr 1959; Marcelis and Ho 1999; Saure 2001; Ho and
White 2005; de Freitas et al. 2018; Rached et al. 2018).
Typical symptoms appear as small light colored, water
soaked spots on the blossom end of the fruit which is as-
sociated with cell plasmolysis and leaky membranes (Ho
and White 2005) (Fig. 2). BER symptoms usually appear
externally on the pericarp at the distal end, but affected
areas may also occur in the internal distal placenta tissue
without visible external symptoms (Brust 2004; Hoch-
muth and Hochmuth 2009). After BER induction, BER-
affected areas often expand and turn into brown necrotic

Fig. 1 Blossom-end rot in various fruit and vegetable crops. a) BER in tomato. b) BER in pepper, image credit (WSU NWREC, 2021). c) BER in
eggplant, image credit (University of Minnesota Extension, 2021). d) BER in squash, image credit (Voyle, 2021). e) BER in watermelon, image credit
(UF/IFAS, 2021)
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regions covering a significant proportion of the fruit and
in some extreme cases affect the entire fruit. Occasion-
ally, BER fails to expand, and the afflicted areas dis-
appear. The symptoms can be exacerbated if they occur
soon after pollination and, in such cases, the fruit never
attains its maximum size. BER-afflicted areas often be-
come prone to invasion from secondary pathogens such
as saprophytic Alternaria fungal species (Brust 2004;
Hochmuth and Hochmuth 2009).

Relationship between Ca2+ and BER
Findings from many studies have suggested that Ca2+

deficiency initiates BER incidence (Shear 1975; Adams
and Ho 1993; Taylor and Locascio 2004; de Freitas et al.
2012b; Watanabe et al. 2021). During fruit growth, the
differential Ca2+ concentrations between the proximal
(high) and distal (low) end of the fruit is correlated to
the appearance of BER such that the higher the differ-
ence, the higher incidence of BER (Franco et al. 1994).
Ca2+ plays an essential role in plant growth and develop-
ment where it fulfills three main functions. Ca2+ acts a
secondary messenger (Kudla et al. 2010; Thor 2019), and
the subcellular concentration in the cytosol, vacuole and
apoplast are tightly regulated by Ca2+-ATPases, H+/Ca2+

exchangers, and channel proteins at different cellular
membranes (Clarkson et al. 1993; Clapham 2007; Kudla
et al. 2010; Thor 2019). Second, Ca2+ has a structural
role in determining the rigidity of the cell wall through

cross-linking with the de-esterified pectin in the middle
lamella (Micheli 2001; Hepler and Winship 2010; Thor
2019). The largest Ca2+ pool of at least 60% is localized
to the cell wall (Demarty et al. 1984). And third, free
apoplastic Ca2+ concentration maintains the cell mem-
brane integrity through connecting the phospholipids
and proteins at the plasma membrane (Hepler and Win-
ship 2010; Marschner 2011; Thor 2019). Ca2+ in BER de-
velopment is associated with the aberrant regulation of
its partitioning and distribution in different cellular com-
partments. For instance, apoplastic Ca2+ concentration
specifically in the distal end of the fruit, rather than total
Ca2+ concentration in the distal part, are negatively cor-
related to BER development (Ho and White 2005; de
Freitas et al. 2011b). Ca2+ homeostasis can be perturbed
by expression of Arabidopsis sCAX1 (Cation Exchanger
1), encoding a functional Ca2+/H+ antiporter in tomato.
sCAX1 encodes a N-terminal truncated version of the full-
length gene that does not contain its regulatory region
and therefore is constitutively active. When sCAX1 is
expressed in tomato, 100% of the fruit exhibited BER
symptoms (Park et al. 2005; de Freitas et al. 2011b). The
sCAX1 tomato exhibited higher total water soluble and
fruit Ca2+ concentrations compared with the control.
However, sCAX1-expressing tomato plants increased the
transport of Ca2+ from the cytosol to the vacuole resulting
in lower cytosol and apoplast Ca2+ concentration com-
pared to non-transformed control. These results support

Fig. 2 BER development in four fruits on one inflorescence. After first BER appearance was observed (top left panel), subsequent images were
taken at time intervals in days from the initial image. Arrows indicate BER afflicted fruits. The BER on the first fruit did not expand to the entire
fruit whereas the last fruit is consumed by BER in a short period of time
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the notion that altered Ca2+ homeostasis among different
cellular compartments interferes with the signaling cas-
cade that orchestrates the induction of downstream re-
sponses to BER or prevent BER from happening
altogether (de Freitas et al. 2011b). The altered Ca2+ distri-
bution is proposed to disrupt the integrity and function of
the cellular membranes, which in turn could lead to leak-
age of solutes into the extracellular space resulting in BER
(Ho and White 2005; Park et al. 2005; de Freitas et al.
2011b).
The majority of the cell wall Ca2+ is bound to the de-

esterified pectin whereas the remainder is in free form
(Marschner 2011). Pectin is the major component of the
middle lamellae in plants (Demarty et al. 1984; White
and Broadley 2003; Marschner 2011) and is synthesized
in the Golgi apparatus to be secreted into the cell wall in
a highly methylesterified form (Goldberg et al. 1996;
Micheli 2001; Wormit and Usadel 2018). During growth,
the secreted pectin undergoes modifications by pectin
methylesterases (PMEs) which is countered by pectin
methylesterase inhibitors (Micheli 2001; Bosch et al.
2005; Pelloux et al. 2007; Palin and Geitmann 2012;
Wormit and Usadel 2018). Ca2+ interacts electrostati-
cally with the negatively charged carboxyl groups on the
demethylated pectin facilitating the cross linking of the
pectin molecules and stiffening of the cell wall (Micheli
2001; Wormit and Usadel 2018). Retaining the concen-
tration of freely available apoplastic Ca2+ is critical to
maintain membrane stability and for cellular responses
to BER. The concentration of free apoplastic Ca2+ is
dependent on pectin bound Ca2+ which is required for
cell wall stability. Thus, when cell wall and membrane
stability collapses, BER symptoms can be initiated in re-
sponse to the stress (de Freitas et al. 2011b; Marschner
2011; Watanabe et al. 2021).
The suspected role of pectin in sequestering Ca2+ and

causing BER has led to studies that aimed at modifying
pectin properties. Using gene silencing, antisense expres-
sion of pectin methylesterase LePME3 (Solyc07g064190)
increased water-soluble Ca2+ concentration in tomato
fruits resulting in less electrolyte leakage and less BER (de
Freitas et al. 2012b). Note however, that the antisense ex-
pression led to the downregulation of other PME genes as
well, namely Solyc03g123630 (PMEU1), Solyc07g064170
(PE1), Solyc07g064180 (PME2.1), Solyc06g051960
(LES.9028) and Solyc03g083360 (Les.10790) (de Freitas
et al. 2012b). The increase in soluble Ca2+ concentration
in the antisense plants is particularly noticeable in the
apoplast and is associated with the lack of cell plasmolysis
compared to control. Moreover, the pectin in the anti-
sense plants was highly methylated compared to control.
In sum, the role of free apoplastic Ca2+ concentration
maintains proper Ca2+ homeostasis among different cellu-
lar compartments and prevents membrane leakage, hence

reduced BER incidence (de Freitas et al. 2012b). In
addition, PMEs are critical in regulating pectin compos-
ition which is directly influencing BER (de Freitas et al.
2012b). Even though numerous studies have correlated
BER to Ca2+ homeostasis (Geraldson 1956; Spurr 1959;
Adams and Ho 1993; Bar-Tal et al. 2001; de Freitas et al.
2011b; de Freitas et al. 2012b), findings from other studies
suggest that aberrant Ca2+ homeostasis is a consequence
and may not be the cause of BER (Nonami et al. 1995;
Saure 2001; Rached et al. 2018; Matsumoto et al. 2021).
For example, before and right after the onset of BER, the
Ca2+ concentration is the same among all the fruits for
the different tissue types (Nonami et al. 1995). As BER is
developing further, the Ca2+ concentrations start to differ
markedly. It is perhaps the organization of the pectin
structure in the middle lamellae that is crucial to regulat-
ing the onset of BER in plants.

Reactive oxygen species (ROS) and BER
Ca2+ and ROS signaling are both interrelated secondary
messengers that respond to many environmental
stresses. Ca2+ regulates ROS production, whereas ROS
regulates Ca2+ homeostasis (Kobayashi et al. 2007; Jiang
et al. 2011; Görlach et al. 2015). Whether ROS poses a
threat to cells or has a role in response signaling de-
pends on the equilibrium between ROS generation and
detoxification (Sharma et al. 2012; Ayer et al. 2014). In
plants, electron transport reactions in the plasma mem-
brane (e.g. NADPH oxidase), the endoplasmic reticulum,
the chloroplast and the mitochondria (e.g. the electron
transport chain) are the major sources of ROS produc-
tion (Trachootham et al. 2008). These sources produce
free radicals such as superoxide anion, hydroxyl radicals
as well as nonradical molecules like hydrogen peroxide
and singlet oxygen (Sharma et al. 2012). Plant cells have
evolved to alleviate the negative impacts of ROS by pro-
ducing enzymatic and nonenzymatic antioxidants in the
ROS scavenging pathway (Mittler 2002; Gratão et al.
2005). Enzymatic antioxidants consist of superoxide dis-
mutase (SOD), ascorbate peroxidase (APX), monodehy-
droascorbate reductase (MDHAR), dehydroascorbate
reductase (DHAR), glutathione reductase (GR), catalase
(CAT), and others (Willekens et al. 1997; Trachootham
et al. 2008; Marengo et al. 2016). The major nonenzy-
matic antioxidants include glutathione, ascorbate, as well
as tocopherol, flavonoids, phenolic compounds, and ca-
rotenoids (Sies and Stahl 1995; Ayer et al. 2014). The
Ascorbate-Glutathione pathway plays a significant role
in detoxifying ROS in plants and consists of four main
enzymes namely: APX, MDHAR, DHAR, and GR and
two antioxidants: AsA and GSH (Noctor and Foyer
1998; Foyer and Noctor 2011).
Excessive ROS leading to lipid and protein oxidation,

enzyme inhibition, and cell membrane leakage are all are
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associated with BER. Therefore, ROS is considered a
critical component of BER onset and development
(Dhindsa et al. 1981; Van Breusegem and Dat 2006;
Sharma et al. 2012; de Freitas et al. 2018; Reitz and
Mitcham 2021). Tomatoes grown under Ca2+-deficient
conditions experience excess ROS accumulation and in-
creased BER incidence that is associated with the upreg-
ulation of NADPH oxidase and SOD (Mestre et al.
2012). Similarly, peppers grown under saline conditions
experience high ROS accumulation in the apoplast due
to increased activity of NADPH oxidase activity (Aktas
et al. 2005). On the other hand, many antioxidant genes
such as CAT, APX, and GR are down-regulated in toma-
toes grown under Ca2+ deficient conditions (Ming and
Zhong-Guan 1995; Schmitz-Eiberger et al. 2002; Yang
and Poovaiah 2002; Mestre et al. 2012). The tomato cul-
tivar HM 4885, one of the preferred processing tomatoes
in California, USA, experienced 85% BER incidence that
was attributed to the down regulation of CAT leading to
higher ROS accumulation (Reitz and Mitcham 2021).
Consequently, the aberrant regulation of critical en-
zymes in the ROS detoxification pathway can lead to ex-
tensive H2O2 accumulation, lipid peroxidation and
membrane breakdown, which subsequently results in in-
creased BER incidence (Mestre et al. 2012).
Tomato varieties that have naturally high levels of as-

corbate and antioxidants during the most sensitive stage
of BER are more resistant to the disorder than those that
have lower antioxidant levels, irrespective of the fruit
Ca2+ concentration (Rached et al. 2018). Further, BER
does not always consume the entire fruit (Fig. 2). This
may be due to increased lignification, antioxidants, and
oxidative stress-related proteins that inhibit further ex-
pansion of BER to the neighboring healthy tissues
(Schmitz-Eiberger et al. 2002; Casado-Vela et al. 2005;
Mestre et al. 2012; Reitz and Mitcham 2021).
Taken together, the ROS enzymes and antioxidants

play a major role in BER development which is enhanced
by insufficient Ca2+ concentration and abiotic stress
(Noctor and Foyer 1998; Aloni et al. 2008; Rached et al.
2018). Specifically, the activation of enzymes in ROS
production pathway as well as inhibition of enzymes in
ROS scavenging pathway leads to membrane leakage
and consequently higher BER incidence.

Other physiological factors in BER development
Certain nutrients have antagonistic effects on the uptake
of each other. High concentrations of monovalent cat-
ions in soils, such as potassium (K+), magnesium (Mg+),
sodium (Na+) and ammonium (NH4

+) have a negative
impact on the uptake of divalent cation Ca2+, thereby in-
creasing BER incidence (Taylor and Locascio 2004; Men-
gel and Kirkby 2012). For instance, a rise in NH4

+

concentration in the nitrate/ammonium ratio suppressed

the Ca2+ uptake and led to an increase in BER develop-
ment (Geraldson 1956; Marti and Mills 1991; Nukaya
et al. 1995; Bar-Tal et al. 2001; Taylor and Locascio
2004). The uptake of other elements such as boron (B+)
may also influence BER incidence. Fruits that were col-
lected from a BER-resistant accession showed a high correl-
ation between B+ and Ca2+ concentration in the distal part
of each fruit whereas the susceptible accession showed no
correlation between the two elements (Watanabe et al.
2021). In this case, the link between B+ and Ca2+ might re-
veal a role in stabilizing the pectin structures in the cell
wall.
Plant growth regulators also affect BER development.

The plant growth regulators auxin and gibberellin (GA)
are reported to accelerate fruit growth and cause an in-
crease in BER (de Freitas et al. 2012a; Gaion et al. 2019).
The decreased Ca2+ concentration that was observed in
the fruits upon the GA application was attributed to in-
creased activity of Ca2+/H+ exchangers and Ca-ATPase
genes, that are responsible for Ca2+ transport into the
storage organelles and the apoplastic space (de Freitas
et al. 2012a). Specifically, GA application leads to the re-
duction of the apoplastic water-soluble Ca2+ content and
enhanced cell membrane permeability (de Freitas, et al.
2012). Additionally, GA application leads to elevated
ROS levels and decreased expression of many antioxi-
dant genes such as APX, SOD, and CAT (Fath et al.
2001). On the other hand, application of growth retar-
dants such as abscisic acid and Apogee (inhibitor of GA
biosynthesis) to tomato plants showed reduced or no
BER (de Freitas et al. 2011a; Barickman et al. 2014; de
Freitas et al. 2014; de Freitas et al. 2018). Eliminating
BER was attributed to the increased pericarp Ca2+ con-
centration and a higher number of functional xylem ves-
sels in the placenta and pericarp tissues of fruits during
the early growth stages (de Freitas et al. 2012a). These
retardants also trigger antioxidant production to counter
ROS activity, thereby further reducing BER incidence
(de Freitas et al. 2018). Slower initial fruit growth rates
are also associated with reduced BER incidence (Ho
et al. 1987; Aktas et al. 2003; Aktas et al. 2005; Vinh
et al. 2018; Watanabe et al. 2021). This suggests that the
increased growth rate following pollination or after
growth regulator application creates extensive stresses in
the distal fruit part. This could lead to lower Ca2+ con-
centrations, and reduced cell wall stabilization and
membrane integrity (Ikeda et al. 2017; Watanabe et al.
2021).

Relationship between BER and fruit morphology
Fruit size and BER onset are positively correlated to one
another in tomato (Marcelis and Ho 1999; Heuvelink
and Körner 2001) and no study has reported the occur-
rence of BER in wild relatives and small fruited varieties
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of tomato (Ho and White 2005). As BER is only ob-
served in cultivated plants, domestication may have
driven BER as a consequence of selections for larger pro-
duce. The tomato gene Cell Size Regulator (FW11.3/
CSR) increases fruit weight by increasing the cell size
(Mu et al. 2017). FW11.3 near isogenic lines (NILs) that
carry the derived allele of CSR showed significantly
higher BER incidence compared to FW11.3 NILs that
carry the wild type allele, indicating that FW11.3/CSR
may have a role in BER development (Mu 2015). The as-
sociation of BER with this fruit weight genes is likely in-
direct and not causative because many tomato varieties
with the derived fruit weight alleles are resistant to BER.
In addition to fruit size, elongated fruit shapes are

more prone to BER than the round-fruited varieties (Ku
and Tanksley 1998; Ho and White 2005; Riboldi et al.
2018). Elongated fruit shape in tomato is controlled by
only a handful of genes, namely SUN, OVATE, OFP20
and FS8.1 (Ku et al. 2000; Liu et al. 2002; Xiao et al.
2008; Sun et al. 2015; Wu et al. 2018). Among these
genes, the round fruit allele of fs8.1 is associated with
low BER Incidence (Ku and Tanksley 1998). Moreover,
the varieties San Marzano carrying the OVATE mutation
and Banana Legs carrying the SUN mutation are highly
susceptible to BER (Riboldi et al. 2018). Despite the de-
mand for these produce shapes in the processing tomato
industry, growers often avoid growing certain varieties
due to potentially high yield losses. The likely mechan-
ism of BER in elongated fruits has been proposed to be
caused by the reduced functional xylem elements in the
distal end of the fruit leading to reduced Ca2+ concen-
tration compared to proximal end (Ho and White 2005;
Riboldi et al. 2018).

Genetic basis of BER
In addition to the physiological factors, tomato varieties
display varying degrees of BER which suggests a genetic
basis to the disorder (Adams and Ho 1992; Ho et al.
1995; Ho and White 2005). The earliest investigation in
the genetic basis of BER came from studies using tomato
introgression lines (ILs). These ILs consist of genomic
segments of Solanum pennellii LA716 introgressed into
Solanum lycopersicum cv M82 (Eshed and Zamir 1995).
Among these lines, IL8–3 features lower BER Incidence
compared to the M82 parent (Uozumi et al. 2012; Ikeda
et al. 2017; Watanabe et al. 2021). This region was fine
mapped to 610 kb corresponding 78 genes (Uozumi
et al. 2012; Ikeda et al. 2017). Because the higher Ca2+

concentration in the distal part of the fruit and the initial
slower growth rate in the BER resistant line, the results
indicate that IL8–3 might harbor gene(s) affecting Ca2+

concentration and growth rate in the early stages of fruit
development. Additionally, further use of these IL8–3
lines revelated that many Ca2+-transport-related genes

such as cation exchanger (CAX), Ca2+-ATPase, Ca2+-
channel and Na+/Ca2+ exchanger were differentially
expressed between M82 and IL8–3 ten days after flower-
ing but none of these genes mapped to location of IL8–
3 on chr08 (Ikeda et al. 2016). These results may suggest
that Ca2+-transport-related genes in other chromosomes
are likely regulated by one of the 78 genes located in 610
kbp region in IL8–3. (Ikeda et al. 2017). Another IL,
namely IL5–4, located on chr05 also featured differences
in BER but in this case, the severity is higher in the IL
than in the control M82 (Matsumoto et al. 2021). This
locus has not been finemapped further.
Due to the low genetic diversity between closely re-

lated tomato accessions, the genetic basis of BER in pop-
ulations derived from crosses among cultivars was
hampered by the lack of molecular markers until re-
cently. With the advent of the full genome sequence of
tomato (Tomato Genome Consortium 2012), many rese-
quencing projects enable the discovery of single nucleo-
tide polymorphisms (SNPs) between closely related
parents. Using the QTL seq approach, the enrichment of
SNPs that are associated with the trait leads to the de-
velopment of molecular markers to map BER loci in the
population (Topcu et al. 2021). In populations derived
from crosses between Solanum lycopersicum var. cerasi-
forme (SLC) and S. lycopersicum var. lycopersicum (SLL),
four loci were identified: BER3.1 and BER3.2 on chr03,
BER4.1 on chr04 and BER11.1 on chr11 (Topcu et al.
2021). BER3.2 and BER11.1 were further finemapped to
1.58 and 1.13Mb respectively, whereas BER11.1 was also
mapped in another population derived from SLL cv Ailsa
Craig and SLL cv Kentucky Beefsteak (Prinzenberg et al.
2021). The studies showed that BER3.2 is likely corre-
sponding to the fruit weight gene FW3.2/KLUH which
was segregating in one of the populations (Topcu et al.
2021) as larger fruit tend to be more susceptible to BER
than smaller fruits (see above section). In sum, the stud-
ies into the genetic basis of BER identified a total of five
loci in tomato namely: chr 03, chr 04, chr 05, chr 08 and
chr 11 and excluding FW3.2/KLUH (Fig. 3). The cloning
of the genes in these loci should provide novel insights
into the onset and early developmental stages of BER.

Conclusion and future perspectives
The research on BER has led to the findings that the
interplay of Ca2+ homeostasis and ROS accumulation
perform critical roles in the development of the disorder.
Together, they affect membrane stability and cell wall
properties as to the degree of pectin methylation and
hence BER appearance. Because the combination of en-
vironmental stress and nutritional factors affect the inci-
dence of BER greatly, this disorder is often difficult to
manage in field and greenhouse growth conditions in
many agricultural settings. Going forward, growers will
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need to remain vigilant and pursue proper field manage-
ment practices such as mulching, effective water drain-
age, proper irrigation systems, balanced fertilizer
applications, and soil reclamation, which is the removal
of salt from the root zone (Machado and Serralheiro
2017; Hagassou et al. 2019). Other management strat-
egies such as the use of growth retardants can also help
alleviate BER symptoms, but these are only available to
commercial growers. On the other hand, a stronger em-
phasis on harnessing the power of the genetic variation
in crop germplasm to at least reduce BER is critical.
For example, a focus on the increased production of
antioxidants in breeding programs should ameliorate
the incidence and severity of BER. These high
antioxidant-producing accessions would prevent lipid
and protein oxidation, membrane breakdown, cell
plasmolysis and hence BER. Another focus in breed-
ing programs should be on vegetable varieties that
feature a slower growth rate following pollination to
avoid developing BER. As the genetic studies start to
shed light on the causal genes underlying BER, new
solutions to crop improvement in many vegetables
are possible. For example, down regulation or knock
outs of BER susceptibility genes using CRISPR-Cas
gene and/or promoter editing should lead to the de-
velopment of more resistant commercially produced
varieties. Therefore, the toolkit to improve BER is ex-
pected to expand with new means for breeders to de-
velop varieties that are more resistant to this often-
devastating physiological disorder.
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