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Abstract

The growth-promoting hormone gibberellin (GA) regulates numerous developmental processes throughout the
plant life cycle. It also affects plant response to biotic and abiotic stresses. GA metabolism and signaling in tomato
(Solanum lycopersicum) have been studied in the last three decades and major components of the pathways were
characterized. These include major biosynthesis and catabolism enzymes and signaling components, such as the
three GA receptors GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA protein PROCERA (PRO), the central
response suppressor. The role of these components in tomato plant development and response to the
environment have been investigated. Cultivated tomato, similar to many other crop plants, are susceptible to water
deficiency. Numerous studies on tomato response to drought have been conducted, including the possible role of
GA in tomato drought resistance. Most studies showed that reduced levels or activity of GA improves drought
tolerance and drought avoidance. This review aims to provide an overview on GA biosynthesis and signaling in
tomato, how drought affects these pathways and how changes in GA activity affect tomato plant response to
water deficiency. It also presents the potential of using the GA pathway to generate drought-tolerant tomato plants
with improved performance under both irrigation and water-limited conditions.
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Introduction
Drought is a common and devastating abiotic stress
which causes damage to crops worldwide (Dai, 2011;
Tardieu, 2020). Water deficiency directly and indirectly
suppresses major biochemical pathways, including
photosynthesis and primary carbon metabolism, leading
to inhibition of growth, flowering and fruit development
(Zhu, 2016; Tardieu et al., 2018). Plants have adopted
three major strategies to cope with drought: drought
escape, drought tolerance and drought avoidance
(Chaves et al., 2003). Some annual plants escape from
severe drought by early flowering (Kooyers, 2015).
Drought tolerance is acquired by osmotic adjustment
(accumulation of osmolytes), accumulation of stress-

protecting proteins and scavenging of reactive oxygen
species (ROS) (Vinocur and Altman, 2005). All higher
(vascular) plants exhibit ‘drought avoidance’ (drought-
stress avoidance) responses during transient water-
deficit episode. These include rapid stomatal closure and
suppression of canopy growth to reduce transpiration
(Brunner et al., 2015; Lind et al., 2015). At the same
time, roots continue to grow, in search of new sources
of water, a phenomenon called hydro- or xero-tropism
(Feng et al., 2016; Dietrich, 2018). This leads to an in-
creased root-to-shoot ratio and improved water balance.
Phytohormones play a central role in plant responses

to drought (Verma et al., 2016; Gupta et al., 2020). Dur-
ing the early stages of soil dehydration, the major stress
hormone abscisic acid (ABA) accumulates and induces
various drought responses (Cutler et al., 2010), leading,
in some plants, to drought tolerance, and in all higher
plants to ‘drought avoidance’ (Kooyers, 2015). Numerous
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studies have shown that the growth-promoting
hormones, auxin (Shani et al., 2017; Salehin et al., 2019),
cytokinins (Nishiyama et al., 2011, Nishiyama et al.,
2011; Farber et al., 2016), brassinosteroids (Ye et al.,
2017; Planas-Riverola et al., 2019; Xie et al., 2019) and
gibberellins (GAs, Colebrook et al., 2014), reduce plant
resistance to water deficiency.
The growth-promoting hormone GA regulates numer-

ous developmental processes throughout the plant life
cycle, from seed germination to fruit development
(Yamaguchi, 2008; Daviere and Achard, 2013). GA also
negatively affects plant response to biotic and abiotic
stresses (Navarro et al., 2008; Colebrook et al., 2014).
GA and inhibitors of GA biosynthesis are widely used in
agriculture to control germination, stem elongation,
plant architecture, flowering time and fruit development
(Rademacher, 2016). Accumulating evidence suggest that
inhibition of GA activity, either by chemical treatments
or by gene-editing, can also be used to improve plant
performance under stress conditions (Eshed and Lippman,
2019). Drought opposes GA-induced processes; it inhibits
seed germination, shoot growth and fruit development
(Munns and Tester, 2008). Several studies have shown
that osmotic stress inhibits GA accumulation (Achard
et al., 2006; Nelissen et al., 2018; Shohat et al., 2021).
In turn, the reduced GA levels lead to the accumula-
tion of DELLA, the master growth inhibitor, which
promotes adaptation to abiotic stresses, including
drought (Colebrook et al., 2014).
Tomato (Solanum lycopersicum), like many other

crops, is susceptible to drought (Iovieno et al., 2016;
Zhou et al., 2019). In the past two decades, numerous
studies on tomato response to drought have been con-
ducted (Gur and Zamir, 2004; Gong et al., 2010), includ-
ing studies assessing the role of GA in such processes
(Nir et al., 2014, 2017; Omena-Garcia et al., 2019; Illouz-
Eliaz et al., 2020; Shohat et al., 2021). Here, we review
the current knowledge on GA biosynthesis and signaling
in tomato, how drought affects these pathways and how
these changes in hormone activity affect tomato plant
response to water deficiency. We also present the poten-
tial in exploiting the GA pathway to generate drought-
tolerant tomato plants with improved performance
under irrigation and water-limited conditions.

GA metabolism and signaling
GA metabolism
A comprehensive and up-to-date review on GA metab-
olism was recently published by Hedden (2020). GAs are
diterpenoids, produced from the general substrate gera-
nylgeranyl diphosphate (GGPP), which is converted to
ent-kaurene by ent-copalyl diphosphate synthase (CPS)
and ent-kaurene synthase (KS) in the plastids (Fig. 1).
ent-kaurene is then converted to the first GA precursor

GA12, by two cytochrome P450 monooxygenases, i.e.,
ent-kaurene oxidase (KO) and ent-kaurenoic acid oxi-
dase (KAO), which act on the outer membrane of the
plastids and in the endoplasmic reticulum, respectively.
Bioactive GAs, are synthesized in the cytosol from GA12

and GA53 by two 2-oxoglutarate-dependent dioxy-
genases (2-ODDs) families, GA 20-oxidases (GA20ox)
and GA 3-oxidases (GA3ox). GA12 is converted to GA9,

and GA53 to GA20, by GA20oxs. Then, GA3oxs, convert
GA20 and GA9 by 3β-hydroxylation to GA1 and to GA4,
respectively.
GA deactivation plays a central role in the regulation

of bioactive GA accumulation in response to both envir-
onmental and developmental cues (Yamaguchi et al.,
2008). GA inactivation is primarily catalyzed by another
family of 2-ODD enzymes, known as GA 2-oxidases
(GA2ox), which reduce the levels of bioactive GAs.
GA2ox genes are classified as either class I, which
catalyze the conversion of bioactive GAs (GA1 and GA4)
or their direct precursors (GA20 and GA9) to biologically
inactive GA derivatives, or class III, which use the early
GA precursors GA12 and GA53 as substrates. Other GA
deactivation mechanisms are driven by cytochrome
P450s, which acts on non-13-hydroxylated GAs (GA12,
GA9 and GA4) to produce epoxidized GAs that lack bio-
logical activity (Zhu et al., 2006), and GA METHYL
TRANSFERASE1 (GAMT1) enzymes, which methylate
bioactive GAs to form inactive GA methyl esters (Varba-
nova et al., 2007).

GA sensing and signaling
GA acts by triggering the destruction of DELLA (Locas-
cio et al., 2013). While DELLAs lack a DNA-binding
domain, they interact with transcription factors to
activate and repress transcription (Zentella et al., 2007;
Yoshida et al., 2014). GA binding to the
GIBBERELLIN-INSENSITIVE DWARF1 (GID1) recep-
tor increases receptor affinity to DELLA, leading to the
formation of the GA-GID1-DELLA complex (Fig. 1).
This facilitates the interaction of DELLA with an SCF
E3 ubiquitin ligase complex via the GID2/SLEEPY1
(SLY1) F-box protein. The SCFSLY1 complex polyubi-
quitinates DELLA, targeting it for degradation by the
26S proteasome (Sasaki et al., 2003; Dill et al., 2004;
Griffiths et al., 2006; Harberd et al., 2009; Hauvermale
et al., 2012), which subsequently leads to transcriptional
reprogramming and activation of GA-dependent
responses.
GID1 interacts with DELLA’s N-terminal region which

harbors the conserved DELLA and VHYNP motifs. The
C-terminal region of DELLA interacts with various tran-
scription factors to repress GA responses, rendering it
the element responsible for DELLA activity (Sun et al.,
2012; Locascio et al., 2013). Mutations in the N-terminal
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region of DELLA block its interaction with the GID1 re-
ceptor, thereby preventing DELLA degradation (Fig. 2).
Such gain-of-function dominant mutations constitutively
inhibit GA responses, including growth. Several studies
have shown that these mutants are tolerant to various
biotic and abiotic stresses, including drought (Magome

et al., 2008; Bari et al., Bari and Jones, 2009; Nir et al.,
2017). By contrast, loss-of-function, recessive mutations
in the C-terminal region of DELLA are associated with
constitutive GA responses (Fig. 2), resulting in excess
elongation and stress-susceptible plants (Achard et al.,
2006, 2008; Nir et al., 2017).

Fig. 1 GA metabolic and signaling pathways in tomato. The scheme shows GA biosynthesis enzymes (green), GA deactivation enzymes (red) and
bioactive GAs (black squares)
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GA metabolism, sensing and signaling in tomato
Tomato is widely used as a model system for crop re-
search; it is diploid, self-compatible, simple to cross, easy
to grow and has an efficient transformation protocol. As
a result, well characterized genetic materials and tools,
sequenced genome and extensive gene expression pro-
files are available (The Tomato Genome Consortium,
2012). Studies in tomato cover many topics, including
flowering, fruit development and maturation, secondary
metabolism, interaction with the environment and hor-
mone activity, in general, and GA metabolism and sig-
naling, in particular (Serrani et al., 2007; Livne et al.,
2015; Illouz-Eliaz et al., 2019; Israeli et al., 2019; Shino-
zaki et al., 2020).
The GA metabolism and signaling pathways in tomato

are summarized in Fig. 1. gib-1, gib-2, and gib-3, three
GA-deficient mutants identified and characterized in to-
mato (Koornneef et al., 1990; Bensen and Zeevaart,
1990) exhibit typical GA-deficiency phenotypes, includ-
ing dwarfism, small and dark green leaves and delayed
seed germination, all of which are corrected by applica-
tion of exogenous GA (Butcher et al., 1990). GIB-1 en-
codes CPS, GIB-3 encodes KS and GIB-2 encodes KAO
(Bensen and Zeevaart, 1990; Koornneef et al., 1990). The
tomato CPS, KS and KO are encoded by a single gene,
and KAO, which forms GA12, has four paralogs (Pattison
et al., 2015).
The later steps in the pathway are catalyzed by rather

large families of 2-ODDs; 8 putative GA20ox, 6 putative
GA3ox and 11 putative GA2ox (Pattison et al., 2015;
Chen et al., 2016; Shohat et al., 2021). CRISPR-derived
ga20ox1 and ga20ox2 mutants, recently characterized in
tomato (Shohat et al., 2021), exhibit mild GA-deficiency
phenotypes, including shorter stems and smaller leaves.
The ga20ox1/ga20ox2 double mutant exhibited an
additive effect, including severe dwarfism, dark-green,

small leaves and delayed germination, suggesting that
GA20ox1 and GA20ox2 play a key role in GA biosyn-
thesis in tomato. A mutation in the tomato class III GA-
deactivating gene GA2ox7 increases the levels of
bioactive GA1 and GA4, and is associated with a unique
phenotype, i.e., elongated internodes but normal leaves,
suggesting limited stem-to-leaf transport of bioactive
GAs (Schrager-Lavelle et al., 2019).
The canonical GA signal transduction pathway in to-

mato includes three GID1 receptors (GID1a, GID1b1
and GID1b2 (Illouz-Eliaz et al., 2019)), a single DELLA
protein named PROCERA (PRO) and a single F-box
protein, SLY1 (Jasinski et al., 2008; Illouz-Eliaz et al.,
2019, 2020). GID1a is the dominant GA receptor with
the strongest effect on stem elongation and leaf growth.
In contrast, flower growth is only affected in plants bear-
ing type B GID1 receptor mutants. The gid1 single and
double mutants exhibit almost normal growth, suggest-
ing overlapping activities and high redundancy. Seeds of
the triple gid1 mutant (gid1TRI) only germinate upon
embryo rescue and the plants exhibit extreme dwarfism
and complete insensitivity to GA.
Three pro (DELLA) loss-of-function alleles were char-

acterized in tomato (Jasinski et al., 2008; Lor et al., 2014;
Livne et al., 2015). The conserved VHVID domain in the
C-terminal region of PRO is required to repress GA re-
sponses (Bassel et al., 2008). A point mutation (T905 to
A) in this domain, in pro, resulted in constitutive GA re-
sponses, leading to early germination, elongated stems
and facultative parthenocarpy (Van Tuinen et al., 1999;
Bassel et al., 2008). proΔGRAS, a null mutant of PRO
(Livne et al., 2015) lacks the entire C′-terminal part of
the protein, exhibits enhanced GA responses compared
to pro, including an extremely elongated stem and ob-
ligatory parthenocarpy. Moreover, in contrast to the
weak pro allele, proΔGRAS is fully insensitive to

Fig. 2 Schematic presentation of the two types of DELLA mutants and their effect on GA signaling. Wild-type (left), DELLA loss-of-function
(center) and gain-of-function (right) mutations. Red X represents the mutation site in DELLA
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paclobutrazol and GA treatments. The third DELLA
loss-of-function allele was generated using Transcription
Activator-Like Effector Nucleases (TALENs, Lor et al.,
2014). This mutant is null and phenocopies proΔGRAS.
Transgenic tomato plants overexpressing the gain-of-
function stable DELLA mutant protein proΔ17 which
lacks the DELLA domain, exhibit a severe GA-deficient
phenotype and GA insensitivity (Nir et al., 2017).
Another gain-of-function allele was generated using
CRISPR-Cas9 technology to target the DELLA domain
in proTALEN, turning its loss-of-function nature to gain-
of-function (Zhu et al., 2019).
A CRISPR-derived tomato sly1 mutant exhibits severe

dwarfism (Illouz-Eliaz et al., 2020). sly1 is insensitive to
GA, suggesting a strong inhibition of GA signaling, con-
firming the importance of DELLA degradation via the
proteasome pathway to relieve GA responses in tomato.

The role of GA and DELLA in tomato plant response to
water deficiency and adaptation to drought
The role of DELLA in plant responses to abiotic stresses
originated independently of GA; the liverwort Marchan-
tia polymorpha DELLA ancestor regulates responses to
stress despite the lack of GA and the canonical GA
signaling pathway (Hernandez-Garcia et al., 2021). In
higher plants, DELLA accumulation depends on GA and
both, antagonistically, affect plant response to stress.
Several studies in tomato have shown that inhibition of
GA activity and accumulation of DELLA promote
drought resistance by affecting several different meta-
bolic and developmental processes throughout the plant
life cycle, from seeds to mature plants (Fig. 3, Nir et al.,
2014, 2017; Omena-Garcia et al., 2019; Illouz-Eliaz et al.,
2019, 2020; Shohat et al., 2021).

GA and drought tolerance in tomato
Tomato seeds are tolerant to desiccation and can ger-
minate after years of dry storage (Priestley et al., 1985).
ABA has a central role in the acquisition of desiccation
tolerance (Ooms et al., 1993; Finkelstein et al., 2008)
through its promotion of the activity of various major
regulators of seed desiccation tolerance during seed mat-
uration, including ABA INSENSITIVE3 (ABI3), FUSCA3
(FUS3) and LEAFY COTYLEDON1 (LEC1) and LEC2
(To et al., To A et al., 2006). GA opposes ABA activity
in seeds (Groot et al., 1987; Tyler et al., 2004; Steinbre-
cher and Leubner-Metzger, 2017), and also affects desic-
cation tolerance; tomato DELLA null mutant proΔGRAS

seeds are susceptible to desiccation and fail to germinate
even after short periods (days) of storage (Livne et al.,
2015). This was attributed to the low expression of the
ABA-regulated, drought tolerance-related genes ABI3,
FUS3 and LE25 in proΔGRAS seeds. It was therefore
suggested that the accumulation of DELLA during seed

maturation is important for the acquisition of ABA-
induced long-term drought tolerance in tomato seeds.
Tolerance to drought can be acquired by osmotic

adjustment, i.e., the accumulation of ions and organic
solutes in the cells (Shabala and Shabala, 2011). Under
water-deficit conditions, some plants accumulate high
levels of solutes in their roots and leaves to reduce the
cellular osmotic potential and maintain high turgor
pressure (Turner, 2018). Omena-Garcia et al. (2019)
reported that the GA-deficient gib-1, gib-2 and gib-3 to-
mato mutants accumulate higher levels of osmolytes,
and were able to maintain higher leaf water content and
leaf turgor under water-deficit conditions.

GA and ‘drought avoidance’ in tomato
All higher plants respond to water limitation by rapid
stomatal closure and inhibition of shoot growth (Brun-
ner et al., 2015). These responses reduce transpiration
and water loss (Skirycz and Inzé, 2010). Nir et al. (2014)
showed that inhibition of bioactive GA accumulation in
tomato by overexpressing the Arabidopsis GAMT1 gene,
reduces water loss under drought conditions. The re-
duced transpiration in the transgenic plants was ascribed
to the smaller leaves and to reduced stomatal aperture.
Later, Nir et al. (2017) showed that overexpression of
the stable DELLA protein proΔ17 in tomato plants re-
duced stomatal aperture and transpiration, independ-
ently of leaf growth. Moreover, targeted overexpression
of proΔ17 in guard cells was sufficient to reduce stoma-
tal aperture, suggesting that PRO acts in guard cells in a
cell-autonomous manner. In line with this, the DELLA
loss-of-function pro mutant exhibits increased stomatal
conductance and water loss under water-deficit condi-
tions. This effect of GA/DELLA is likely part of the nat-
ural ‘drought avoidance’ response in tomato; under
water-deficit conditions the expression of the GA deacti-
vation gene GA2ox7 is strongly upregulated in guard
cells, leading to reduced levels of bioactive stomatal GAs
(Shohat et al., 2021). This upregulation of GA2ox7 is re-
quired for the rapid stomatal response to drought, as the
loss of GA2ox7 activity inhibited stomatal closure in the
early stages of soil dehydration (Shohat et al., 2021). A
role for GA in stomatal movement was also described in
Commelina benghalensis, Vicia faba and Fritillaria
imperialis, where GA application increased stomatal
aperture (Santakumari and Fletcher, 1987; Goring et al.,
1990).
The effects of proΔ17 on stomatal closure and water

loss were suppressed in the ABA-deficient sitiens (sit)
tomato mutant, indicating that the effect of DELLA is
ABA-dependent. While DELLA did not affect ABA
levels, increased DELLA activity promoted ABA re-
sponses in guard cells (Nir et al., 2017; Shohat et al.,
2020). RNAseq analysis of isolated guard cells derived

Shohat et al. Molecular Horticulture            (2021) 1:15 Page 5 of 12



from tomato plants with high versus low DELLA (PRO)
activity, identified the ABA transporter ABA-IMPORT-
ING TRANSPORTER 1.1 (AIT1.1) as upregulated by
PRO (Shohat et al., 2020). The CRISPR-derived ait1.1
mutant exhibits increased transpiration and reduced
ABA-induced stomatal closure. ait1.1 also suppresses
the promoting effect of DELLA on stomatal closure, sug-
gesting that most, if not all, of the effects of GA/DELLA

on stomatal response to water deficiency are related to
the negative cross-talk between GA and ABA.
GA and DELLA also impact ‘drought avoidance’

through developmental responses. Reduced transpiration
throughout prolonged periods of water deficiency is also
achieved by growth suppression and the reduction of
transpiration area (Salah and Tardieu, 1997). Several
studies suggest that inhibition of GA accumulation

Fig. 3 Low GA activity promotes drought resistance in tomato via several mechanisms. Low GA levels or activity promote ‘drought tolerance’ by
osmoregulation (Omena Garcia et al., 2019). It also promotes ‘drought avoidance’ by inhibiting canopy growth, accelerating stomatal closure,
reducing xylem expansion and proliferation and increasing root to shoot ratio (Nir et al., 2014,2017; Illouz Eliaz et al., 2020; Ramon et al., 2020;
Shohat et al., 2020, 2021)

Shohat et al. Molecular Horticulture            (2021) 1:15 Page 6 of 12



under water-deficit conditions plays a role in drought-
induced growth suppression (Skirycz and Inzé, 2010;
Litvin et al., 2016). For example, low levels of GA in
Populus inhibit growth and promote resistance to water-
deficit conditions (Zawaski and Busov, 2014). Drought
conditions inhibit GA accumulation in maize leaf
elongation-zones and suppress their growth (Nelissen
et al., 2018). The reduced GA levels in tomato under
water-deficit conditions is a results of both, inhibition of
GA biosynthesis and activation of GA catabolism (Litvin
et al., 2016; Shohat et al., 2021). Water-deficit conditions
inhibit the expression of the GA biosynthesis genes
GA20ox1 and GA20ox2, promote the expression of
GA2ox7, reduce the levels of bioactive GAs and suppress
leaf expansion (Shohat et al., 2021). ga20ox1 and
ga20ox2 mutants exhibit reduced whole-plant transpir-
ation under water-deficit conditions due to their smaller
canopy area.
While shoot growth is inhibited under water-deficit

conditions, root growth is maintained, and even pro-
moted, leading to increased root-to-shoot ratio (Sharp
et al., 2004). These developmental changes improve
water balance under water-limited conditions. Some evi-
dence implies that GA has a role in altering root-to-
shoot ratio under water-deficit conditions. Although GA
promotes root elongation in Arabidopsis (Yaxley et al.,
2001; Fu and Harberd, 2003), in some other species, GA
has no effect or even suppresses root growth (Berova
and Zlatev, 2000; Gou et al., 2010; Fonouni-Farde et al.,
2019; Moriconi et al., 2019). Reduced GA levels or
signaling promote lateral root density and growth in
Populus (Gou et al., 2010). In Medicago, GA inhibits and
the GA biosynthesis inhibitor paclobutrazol, promotes
primary root elongation and lateral root counts
(Fonouni-Farde et al., 2019). The DELLA loss-of-
function sln1 barley mutant exhibits reduced root
growth (Moriconi et al., 2019). In tomato, GA has a
strong effect on shoot growth, but only a minor effect
on primary root elongation (Ramon et al., 2020). In line
with this, gidTRI exhibits a dramatically increased root-
to-shoot ratio due to the strong inhibition of shoot
growth, but only a mild effect on root elongation. Thus,
inhibition of GA accumulation upon water deficiency is
expected to restrict shoot growth without conferring an
effect on root elongation and therefore, may contribute
to the increased root-to-shoot ratio.
Low GA activity also reduces water loss in tomato

through changes in the hydraulic conductivity; low GA
activity in gid1a or sly1 mutants inhibits xylem-vessel
expansion and proliferation and reduces hydraulic con-
ductivity (Illouz-Eliaz et al., 2020). Under severe drought
conditions, the effect of low GA activity on xylem ex-
pansion can also protect plants from cavitation and em-
bolism (Ishihara and Hirasawa, 1978; Baum et al., 1999;

Brodribb and Hill, 2000). Thus, inhibition of xylem ex-
pansion and proliferation by low GA activity may be an-
other mechanism through which reduced GA promotes
adaptation to prolonged periods of limited water.

Harnessing the GA pathway to improve tomato
performance under water-limited conditions
Manipulation of the GA pathway has enormous poten-
tial in crop improvement (Eshed and Lippman, 2019).
Mutations in the GA biosynthesis or signaling pathways
have been used to improve crops. The best example is
the introduction of semi-dwarf cereal crops in the 1960s,
which led to a significant increase in yield. The semi-
dwarf varieties are resistant to lodging even when exces-
sively fertilized (Wu et al., 2020). Two major types of
mutations are responsible for what has come to be
known as the ‘Green Revolution’ (Hedden, 2003); a loss-
of-function mutation in the SD1 gene encoding the GA
biosynthesis enzyme GA20ox2 in rice (Monna et al.,
2002; Sasaki et al., 2002; Spielmeyer et al., 2002), and a
gain-of-function mutation in Rht1, a gene encoding
DELLA in wheat (Peng et al., 1999).
As described above, the GA pathway can also be har-

nessed in tomato to enhance resistance to abiotic
stresses, including drought. Since GA and DELLA have
a pleotropic effect on growth, a trade-off between yield
and drought resistance is expected. However, this might
only be true for strong inhibition of GA activity. Illouz-
Eliaz et al. (2020) showed that while mutation in a single
GA receptor (GID1a) suppressed growth in the field, it
had no effect on yield, giving rise to a tomato line with a
higher harvest index (fruit weight/plant fresh weight).
This is a desired side-effect of GA inhibition, in that it
allows higher planting density to obtain higher yield per
unit area (Gifford and Evans, 1981). Thus, the ultimate
goal is to generate mutants with mild dwarfism, normal
yield under well-watered conditions and significantly im-
proved drought resistance. Introduction of the CRISPR
technology has made this more feasible to achieve within
a relatively short time (Jinek et al., 2012; Brooks et al.,
2014), in contrast to the decades required when using
classical breeding (Bai and Lindhout, 2007). CRISPR-
based technologies provide a variety of genome-editing
tools, including targeted mutation knockouts (KOs),
tissue-specific KOs, multiplex gene editing, targeted in-
sertion, gene activation and precise genome editing
(Brooks et al., 2014; Rodríguez-Leal et al., 2017; Zhu
et al., 2020; Dong and Ronald, 2021; Pan et al., 2021).
CRISPR has already been applied to improve the
agronomical traits of an orphan Solanaceae crop
(Physalis pruinosa) and a wild tomato species (Solanum
pimpinellifolium), by simultaneously editing four genes
involved in plant architecture (SP), flowering time

Shohat et al. Molecular Horticulture            (2021) 1:15 Page 7 of 12



(SP5G) and fruit size (SlCLV1/3 and SlWUS) (Lemmon
et al., 2018; Li et al., 2018).

Possible GA pathway targets for CRISPR-based mutagenesis
to increase drought resistance in tomato
Transduction of the GA signal is based on a cascade of
interactions, i.e., GA with GID1, GID1 with DELLA and
DELLA with SLY1. The possible interaction sites be-
tween these three signaling components are presented in
Fig. 4, and described elaborately by McGinnis et al.
(2003), Murase et al. (2008) Hirano et al., (2010). At-
tenuating without eliminating the affinity between these
interacting components, may lead to mild growth sup-
pression without affecting yield, but with increased
drought resistance. A rapid and efficient way to do so is
by applying precise CRISPR-based genome-editing tools
such as base editing (single base-pair substitution/dele-
tion, Zhu et al., 2020).
Perturbations of GA binding to GID1 can be ob-

tained by site-specific mutations in the GA binding
“pocket” of GID1 (Murase et al., 2008). Attenuating
the affinity of GID1 to DELLA (PRO) can be achieved
by mutations in the GID1 N-terminal extension (N-
Ex) domain (Murase et al., 2008) or by mutations in
the N-terminal region of PRO (GID1 binding site).
However, deletion of PRO’s N-terminal causes severe
dwarfism (Zhu et al., 2019). Thus, mutations in other
sites, outside the N-terminal region, that affect GID1
binding, may generate weak gain-of-function alleles,
as shown before in rice (Hirano et al., 2010). A mild
reduction in GA signaling can also be obtained by
interfering with the DELLA-SLY1 interaction. SLY1
has two conserved domains required for its inter-
action with DELLA, i.e., the GGF domain and the
LSL domain (McGinnis et al., 2003). A CRISPR-
derived tomato sly1 mutant, which carries a single
nucleotide insertion, causing a frame shift and prema-
ture stop codon before the LSL domain, was already
generated, but has a severe dwarf phenotype (Illouz-
Eliaz et al., 2020). Using the same precise editing

techniques to generate weak sly1 alleles which only
reduces the affinity to DELLA, may provide fine-
tuning of GA responses only.
Attenuation of GA signaling can also be achieved

using multiple guide constructs to target various cis-
regulatory elements in the promoters of GID1s, PRO
or SLY1. This is expected to generate a collection of
alleles exhibiting changes in the expression levels and
patterns and their subsequent activity, and to enable
selection of drought-tolerant lines. It should be noted,
however, that DELLAs are primarily regulated at the
post-translational level (Blanco-Tourinan et al., 2020).
Thus, this approach seems to be more relevant to
GID1s and SLY1.
The GA signaling components in tomato are

encoded by a small number of genes (single PRO and
SLY1 and three GID1s). Thus, mutation in a single
gene might lead to undesired phenotypic changes and
yield loss. Illouz-Eliaz et al. (2019, 2020) show that
although the gid1a mutant grows well under stable
conditions, it exhibits phenotypic instability when
grown under extreme, unstable environmental condi-
tions in the field, leading, in some plants, to strong
growth suppression and yield loss. Growth and yield
instability might be prevented if the target gene be-
longs to a large family. For example, the enzymes in
the later stages of the GA biosynthetic pathway are
encoded by rather large gene families in all plant spe-
cies. The tomato genome encodes 8 GA20oxs and 6
GA3oxs (Pattison et al., 2015). Several studies show
that enzymes from these groups exhibit tissue-specific
expression (Serrani et al., 2007; Chen et al., 2016).
According to their spatial expression pattern (http://
bar.utoronto.ca/efp_tomato/cgi-bin/efpWeb.cgi),
GA20ox1 and GA20ox2 seems to be the best candi-
dates for the generation of drought-resistant plants
with no, or a weak effect on yield. Indeed, ga20ox1
and ga20ox2 mutants exhibit a mild growth pheno-
type and reduced water loss under drought conditions
(Shohat et al., 2021).

Fig. 4 Possible target sites in the major tomato signaling components to attenuate without eliminate GA responses. GA-GID1 interaction sites are
indicated by green arrows, GID1-PRO interaction by blue arrows and PRO-SLY1 interaction by red arrows. The specific sites in homologous GID1,
DELLA and SLY1 are elaborated in McGinnis et al., (2003), Murase et al., (2008) and Hirano et al., (2010)
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In conclusion, manipulations of the GA pathway in to-
mato can be exploited to improve drought resistance, as
well as resistance to other abiotic and biotic stresses.
Alongside resistance, these modifications may improve
yield through their effect on plant architecture and har-
vest index. Further research will still be necessary to de-
velop high-yield tomato plants with improved stress
resistance using the GA pathway, and will be made pos-
sible using the recent advances in gene-editing
technologies.
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